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The behavior of the Generalized Alignment Index (GALI) method has been extensively studied
and successfully applied for the detection of chaotic motion in conservative Hamiltonian systems,
yet its application to non-Hamiltonian dissipative systems remains relatively unexplored. In this
work, we fill this gap by investigating the GALI’s ability to identify stable fixed points, sta-
ble limit cycles, chaotic (strange) and hyperchaotic attractors in dissipative systems generated
by both continuous and discrete time dynamics, and compare its performance to the analysis
achieved by the computation of the spectrum of Lyapunov exponents. Through a comprehen-
sive study of three classical dissipative models, namely the 3D Lorenz system, a modified Lorenz
4D hyperchaotic system, and the 3D generalized hyperchaotic Hénon map, we examine GALI’s
behavior and possible limitations in detecting chaotic motion, as well as the presence of different
types of attractors occurring in dissipative dynamical systems. We find that the GALI success-
fully detects chaotic motion, as well as stable fixed points, but it faces difficulties in distinctly
discriminating between stable limit cycles, chaotic attractors, and hyperchaotic motion.
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1. Introduction

It is not that long ago since the huge step into chaos
theory came into effect in 1963 when meteorolo-
gist Edward Lorenz, trying to perform numerical
simulations of the earth’s atmosphere, introduced
a three-dimensional (3D) autonomous nonlinear
chaotic system [Lorenz, 1963]. Chaotic motion,
caused by nonlinearity in dissipative systems (i.e.
systems with the presence of friction or resistance,
etc.), is a significant area of study in dynamical
systems theory, impacting various disciplines like
physics, chemistry and biology (see e.g. [Martyu-
shev & Seleznev, 2006]), engineering [Brogliato
et al., 2007], economics [Zhang, 2006] and communi-
cation security [Grassi & Mascolo, 1999; Cuomo &
Oppenheim, 1993]. After Rössler published his work
on the analysis of a hyperchaotic system, that is,
a system having two positive Lyapunov Exponents
(LEs), in 1979 [Rössler, 1979], numerous researchers
delved into the study of hyperchaotic systems. Fur-
thermore, in [Baier & Klein, 1990], the authors
introduced a discrete hyperchaotic map derived
from the well-known Hénon map [Hénon, 1976].
Subsequent to these developments, various well-
known chaotic and hyperchaotic systems of both
continuous and discrete time have been proposed,
as documented in [Sprott, 2010]. A recent review
article collection [Awrejcewicz & Sanjuán, 2021]
offers an overview of the latest advancements in
modeling complex systems exhibiting chaotic and
hyperchaotic behavior. Hyperchaotic systems offer
enhanced randomness and unpredictability com-
pared to chaotic systems in areas of real-world
applications such as image encryption (see e.g.
[Wang et al., 2023]), as the added complexity in
parameter space increases security by making it
harder for attackers to decipher the encryption
method or extract information from encrypted data.

Throughout the years, LEs (see e.g. [Benettin
et al., 1980a, 1980b; Skokos, 2010]) have served as a
valuable tool to characterize the asymptotic behav-
ior of nonlinear dynamics, and are widely employed
for identifying chaotic behavior. In addition, sev-
eral methods including the Fast Lyapunov Indica-
tor (FLI) [Froeschlé et al., 1997a; Froeschlé et al.,
1997b; Lega et al., 2016], as well as the Smaller
(SALI) [Skokos, 2001; Skokos et al., 2003, 2004] and
the Generalized Alignment Index (GALI) [Skokos
et al., 2007; Skokos & Manos, 2016] methods, have
been introduced over time to discern between reg-
ular and chaotic motion. The GALI method stands

out as a well-established and effective numerical
technique for detecting chaos in Hamiltonian sys-
tems and area-preserving maps [Skokos et al., 2007,
2008; Bountis et al., 2009; Manos et al., 2012;
Boreux et al., 2012; Skokos & Manos, 2016], hav-
ing significant advantages over the most commonly
used chaos detection method, i.e. the computation
of the maximum LE (mLE), as it overcomes the
slow convergence of the mLE to its limiting value.
Additionally, the GALI indices have been proven
powerful in identifying the dimensionality of tori
on which regular motion takes place [Skokos et al.,
2008; Moges et al., 2020].

Up until now, the SALI and the GALI meth-
ods have predominantly been applied to the investi-
gation of conservative systems. Nevertheless, there
have been some preliminary applications of these
methods to nonautonomous dissipative models
[Huang & Wu, 2012; Huang & Zhou, 2013; Tchakui
et al., 2020], while in [Huang & Zhou, 2013], both
the SALI and the FLI methods were used to iden-
tify parameter intervals associated with ordered or
chaotic trajectories in a modified Lorenz chaotic
system. In addition, the exploration of the transi-
tion from regular to chaotic behavior via a model
parameter variation has been conducted for a mod-
ified Lü chaotic system having exponential terms
in [Huang & Cao, 2014]. Furthermore, the chaotic
properties of a five-dimensional (5D) fractional-
order chaotic system were examined using LEs and
the SALI in [Yan et al., 2023]. These studies showed
SALI’s efficacy as a chaos detection technique for
dissipative dynamical systems. Moreover, the GALI
method has also been used for the detection of reg-
ular and chaotic motion in Hamiltonian systems
having a relatively slow time-dependency when one
or more system parameters vary with time [Manos
et al., 2013; Manos & Machado, 2014; Machado &
Manos, 2016; Tchakui et al., 2020; Manos et al.,
2021].

Our work primarily aims to systematically
explore the performance of the GALI method in
dissipative dynamical systems of continuous time
whose evolution is generated by a set of Ordinary
Differential Equations (ODEs), and of discrete time
dissipative maps. Our objective is to investigate the
behavior of the GALI indices for various typical
cases of trajectories observed in such dissipative sys-
tems. To this end, we initially identify the possible
different types of motion that can be encountered
in dissipative systems by computing the respective
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spectrum of LEs per case, and then we compute
the time evolution of the various GALI indices. We
perform our investigations for three classical, well-
studied models, each exhibiting distinct dynami-
cal features. We begin by considering the classical
3D Lorenz system, renowned for the presence of
strange attractors [Lorenz, 1963]. Then, we study a
modified Lorenz four-dimensional (4D) dissipative
chaotic system [Yujun et al., 2010] to investigate
hyperchaotic motion, i.e. trajectories having two (or
more) positive LEs. Finally, we consider the 3D
generalized hyperchaotic Hénon map [Awrejcewicz
et al., 2018], whose two control parameters give
rise to both chaotic and hyperchaotic attractors. By
using these three models, we examine the dynam-
ics of both continuous and discrete time dynamical
systems and provide a thorough investigation of the
GALI’s behavior.

The paper is organized as follows: The LEs
and the GALI methods are introduced in Sec. 2.
The three dissipative dynamical systems considered
in our investigation are introduced in Sec. 3. The
behavior of the LEs and the GALI method for sev-
eral trajectories of these models, as well as a com-
parison between the results obtained by these chaos
indicators, is presented in detail in separate subsec-
tions of Sec. 4; namely, the 3D Lorenz system is
studied in Sec. 4.1, the 4D continuous hyperchaotic
system is analyzed in Sec. 4.2, and the generalized
hyperchaotic Hénon map is investigated in Sec. 4.3.
Finally, the main findings and conclusions of our
work are summarized in Sec. 5.

2. Chaos Detection Techniques

We introduce here the two computational methods
we use in this paper to distinguish between regu-
lar and various types of chaotic motion occurring
in the three dissipative systems we study. In order
to classify the different types of chaotic motion and
attractors encountered in these systems, we utilize
the full spectrum of LEs. Hence, we start by briefly
providing the definition of the LEs and then we
define the GALI method. In order to avoid repeti-
tions, we define the LEs and the GALI method only
for continuous time dissipative systems, and make
explicit comments whenever these definitions need
adaptation for discrete time systems.

We start by considering a trajectory of
a conservative autonomous dynamical system
whose evolution in the system’s N -dimensional
(ND) phase is governed by a set of ODEs

[Taylor, 2005]:

ẋ =
dx

dt
= f(x(t)), (1)

where the vector x(t) ∈ RN represents the state
variables, and f : RN → RN is a vector field.
In (1), ẋ denotes the time-derivative dx

dt . Equa-
tion (1) can be understood as describing the evo-
lution of a dynamical system defined by a finite-
dimensional state vector x(t) of dimension N , which
evolves continuously over time t.

To define the LEs and the GALI, the concept
of variational equations is needed (see for exam-
ple [Skokos, 2010] and references therein for more
details). These equations represent the linearized
version of ODEs governing the time evolution of an
infinitesimal perturbation v(t) (typically called a
deviation vector) of a reference trajectory x(t), and
have the form

v̇(t) = J(x(t)) · v(t0), (2)

where J(x(t)) is the Jacobian matrix of f(x(t))
and v(t0) = (δx1(t0), . . . , δxN (t0)) is the initial
deviation vector from a given trajectory with Ini-
tial Condition (IC) x(t0) at the starting time t0.
The components of v(t0), denoted as δx1(t0), . . . ,
δxN (t0), represent small perturbations introduced
to each one of the state variables of the system.
For continuous systems, the evolution of the vector
v(t0) is computed through the simultaneous inte-
gration of the sets of ODEs given in (1) and (2).
The vector v(t) essentially describes how small per-
turbations from the IC evolve over time along the
trajectory of the dynamical system.

We note that the divergence, ∇f , of the vector
field f in (1) determines the instantaneous rate of
change of the phase space volume along the trajec-
tory x(t), and can be either positive (expanding),
negative (contracting) or zero (conserved). The
average (over time) rate of phase space volume
change, ∆f , can be used to determine whether a
dynamical system is dissipative or not. In partic-
ular, a system is characterized as dissipative, con-
servative or expanding in phase space volume, if
∆f < 0, ∆f = 0 or ∆f > 0, respectively [Taylor,
2005]. We emphasize that the three dynamical sys-
tems considered in our study are dissipative.

2.1. Lyapunov exponents

A ND dynamical system has N LEs. Among these,
the mLE, χ1, essentially measures the average rate
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of convergence and divergence between neighboring
trajectories in the dynamical system’s phase space,
and it is typically computed as [Benettin et al.,
1980a, 1980b; Skokos, 2010]

χ1 = lim
t→∞

λ1(t), (3)

where the quantity λ1 is the so-called finite time
maximum Lyapunov Exponent (ftmLE) defined as

λ1(t) =
1

t
ln
‖v(t)‖
‖v(0)‖

. (4)

In (4), vectors v(0) and v(t) represent the devia-
tion vectors from a given trajectory at times t = 0
and t > 0, respectively, while ‖ · ‖ denotes the usual
Euclidean norm of a vector. Similarly, the other
LEs, χ2, χ3, . . . , χN (χ1 ≥ χ2 ≥ χ3 ≥ · · · ≥ χN ),
can be computed as the t → ∞ limits of appro-
priately defined quantities, λ2(t), λ3(t), . . . , λN (t),
which are called finite time LEs (ftLEs) (see
[Skokos, 2010] for more details). In this work, we
follow the numerical algorithm proposed by [Benet-
tin et al., 1980a, 1980b] to compute the whole set of
LEs of a dynamical system, i.e. the so-called spec-
trum of LEs.

The mLE is used to distinguish between regular
(χ1 = 0) and chaotic (χ1 > 0) motion. We note that
in Hamiltonian systems the mLE is strictly positive
for ICs leading to chaotic motion, while for regular
trajectories, the ftmLE (4) tends to zero following
a power law decay λ1(t) ∝ t−1 [Skokos, 2010]. Fur-
thermore, computing more (or even all) LEs offers
additional insights into the underlying dynamics
and the statistical properties of a dynamical system.
In cases of hyperchaotic motion, the two (or more)
largest LEs are positive. Furthermore, the spectrum
of LEs can be utilized to characterize various types
of motions, e.g. limit cycles, chaotic strange attrac-
tors, and hyperchaotic attractors. More specifically,
in the ND phase space of a dynamical system, we
can have various types of trajectories and attractors
[Cencini et al., 2010]:

(1) Stable fixed point : In this case, all LEs are
negative. This arrangement is represented as
(−,−, . . . ,−).

(2) Stable limit cycle: For a limit cycle, the mLE is
zero, while the remaining LEs are all negative.
This case is denoted as (0,−, . . . ,−).

(3) k-dimensional stable torus: Here, the first k LEs
are equal to zero, while the remaining ones are
negative. We denote this arrangement of LEs as
(k(0, . . . , 0),−, . . . ,−).

(4) Chaotic strange attractor : For a strange attrac-
tor, the mLE is positive, the second largest
LE is zero, while the rest are negative. This
arrangement is represented as (+, 0,−, . . . ,−).

(5) Hyperchaotic attractor : In this case, there are
at least two positive LEs.

It is worth mentioning that the sum of all LEs
(
∑N

j=1 χj) measures the average contraction rate
of phase space volumes. In dissipative systems, the
phase space volume formed by a set of trajectories
undergoes exponential shrinking, hence resulting in
a negative sum of LEs.

2.2. The GALI method

The SALI and GALI methods have been used for
over two decades as effective chaos detection tech-
niques for dynamical systems. The GALI of order k
(GALIk) is a measure that quantifies the volume of
a generalized parallelogram formed by k unit devia-
tion vectors, v̂1, v̂2, . . . , v̂k, and is computed as the
norm of the wedge product of these vectors [Skokos
et al., 2007]:

GALIk(t) = ‖v̂1 ∧ v̂2 ∧ v̂3 ∧ · · · ∧ v̂k‖. (5)

Let us briefly discuss the behavior of the GALI for
ND Hamiltonian systems. For regular trajectories,
any k ≤ N linearly independent initial deviation
vectors used to compute the GALIk will eventually
fall on the ND tangent space of the torus on which
the motion takes place [Skokos et al., 2007]. In this
case, the GALI value remains positive and practi-
cally constant, i.e.

GALIk(t) ∝ constant, if k ≤ N. (6)

If we consider k > N linearly independent ini-
tial deviation vectors, the asymptotic GALI value
will be zero, because the set of deviation vectors will
eventually become linearly dependent, as they will
all fall on the ND tangent space of the torus. In
this case, the GALIk tends to zero following a well-
defined power law decay [Skokos et al., 2007]. On
the other hand, for chaotic trajectories (and unsta-
ble periodic orbits), all deviation vectors will even-
tually align to the direction defined by the mLE and
consequently the value of the GALIk decays expo-
nentially fast to zero. The rate of this decay depends
on the values of the k largest LEs, as detailed in
[Skokos et al., 2007; Manos et al., 2012]:

GALIk(t) ∝ e−[(χ1−χ2)+(χ1−χ3)+···+(χ1−χk)]t. (7)
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3. Continuous and Discrete Time
Dynamical Models

To explore the behavior of the GALI indices for
various types of attractors in continuous and dis-
crete time dissipative systems, we consider three
simple dynamical models (two continuous time sys-
tems and one discrete time map). These dynami-
cal models allow us to cover different characteristic
types of trajectories in our work, including stable
fixed points, stable limit cycles, chaotic and hyper-
chaotic attractors. To the best of our knowledge, no
comprehensive, detailed studies (similar to the ones
performed for LEs in e.g. [Qi et al., 2005; Zheng
et al., 2018]) have been conducted to investigate
how the GALI indices behave for different types of
attractors in dissipative systems.

In our work on the continuous time dissipa-
tive systems (Secs. 4.1 and 4.2), we implement
the fourth-order Runge–Kutta integration method
to numerically solve the equations of motion,
along with their corresponding variational equa-
tions. However, when we consider a dissipative dis-
crete map in Sec. 4.3, we compute the evolution of
the studied trajectory and its associated deviation
vectors by iterating both the map itself along with
the so-called tangent map, which governs the devi-
ation vector’s evolution (see e.g. [Skokos, 2010]).

3.1. The 3D Lorenz system

We start our analysis by considering one of the
most famous dissipative systems, namely the 3D
Lorenz system [Lorenz, 1963], which is a well-known
example of a chaotic, nonlinear dynamical system
that has been broadly studied in the literature (see
e.g. [Lorenz & Hilborn, 1995; Strogatz, 2018; Shen,
2023]). The system consists of three coupled ODEs
that describe the behavior of a simplified atmo-
spheric convection model:

ẋ = a(y − x),

ẏ = rx− y − xz,

ż = xy − bz,

(8)

where x, y and z are state variables and a, b and r
are parameters controlling the trajectories’ dynam-
ical evolution. For instance, when a = 10 and
b = 8/3, system (8) exhibits chaotic attractors of
different shapes depending on the value of r. More
specifically, this model will help us analyze and
compare the behavior of the LEs and the GALIs

for stable fixed points, limit cycles, and chaotic
motions.

3.2. The 4D Lorenz hyperchaotic
system

The next model we consider is a modified 4D Lorenz
hyperchaotic system [Yujun et al., 2010] which
exhibits hyperchaotic motion (i.e. trajectories hav-
ing two positive LEs). The model originates from
the standard 3D Lorenz system (8), with the addi-
tion of an extra nonlinear term in the set of ODEs,
which also includes a feedback control term and a
coupling term (see e.g. [Qi et al., 2005]). The system
is defined by a set of four coupled ODEs as follows:

ẋ = a(y − x) + yz,

ẏ = cx− y − xz + w,

ż = xy − bz,

ẇ = −xz + rw,

(9)

where x, y, z and w represent the state variables of
the system, and a, b, c and r are its control param-
eters. In [Yujun et al., 2010], it was demonstrated
that this system can display hyperchaotic motion
by fine-tuning its parameter r. For example, by set-
ting a = 35, b = 8/3 and c = 55, model (9) exhibits
a wide range of chaotic behaviors characterized by
a positive mLE, along with hyperchaotic motion
having two positive LEs. We note that for these
parameter values, system (9) is dissipative when
r < 38.667 [Yujun et al., 2010] and, for instance,
r = 1.3 results in the appearance of hyperchaotic
behavior.

3.3. The generalized hyperchaotic
Hénon map

The last model we consider is a generalized ver-
sion of the classical two-dimensional (2D) Hénon
map [Hénon, 1976], the so-called generalized hyper-
chaotic Hénon map [Baier & Klein, 1990], which
has an additional state variable, z, compared to the
original model. The 3D Hénon map is described by
the following equations:

x′ = a− y2 − bz,

y′ = x,

z′ = y,

(10)

where x, y and z are the state variables at discrete
time n, a and b are the control parameters of the
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map and (x′, y′, z′) denotes the evolved state vector
after one iteration of the map. Map (10) exhibits a
richer dynamics with respect to its 2D counterpart,
including the presence of hyperchaotic motion for
a = 1.6 and b = 0.01.

4. Numerical Results

In this section, we examine in detail the behavior of
the GALI method for various representative types
of trajectories appearing in the three considered
dynamical systems described in Sec. 3. To this end,
we consider stable fixed points, stable limit cycles,
chaotic strange attractors, and hyperchaotic trajec-
tories. Let us also stress that the choice of the mod-
els’ parameters resulting in these diverse dynamical
behaviors and motions was achieved with the help
of the computation of the related LEs spectra.

4.1. Numerical investigation of the
3D Lorenz system

In what follows, we fix the parameters of the 3D
Lorenz system (8) to a = 10 and b = 8/3 and allow
the third parameter, r, to vary. For our numerical
simulations, we integrate system (8) and its respec-
tive variational equations obtained by the applica-
tion of (2), up to t = 105 time units.

4.1.1. A stable fixed point case

Figure 1(a) illustrates the phase space (x, y, z) por-
trait of the 3D Lorenz system (8) with parameters
a = 10, b = 8/3, and r = 2.1, for the orbit with
IC (x, y, z) = (1, 3, 6) (indicated by an orange circle
point). The orbit’s evolution (represented by a gray
and black curve) results in a trajectory tending to a
stable fixed point at (x∗, y∗, z∗) = (4.899, 4.899, 9).
We note that here, and throughout the paper, we
use gray color to indicate the initial time interval
of the trajectory’s evolution, while we also show
the different 2D projections of the trajectory on
the planes xy (red curve), xz (blue curve), and yz
(green curve). In Fig. 1(b), we show the time evolu-
tion of the three ftLEs, λj , j = 1, 2, 3, of the trajec-
tory depicted in Fig. 1(a). As expected for a stable
fixed point (see Sec. 2.1), all ftLEs remain negative.
In particular, λ1 (red curve) and λ2 (blue curve)
converge to almost identical values χ1 ≈ χ2 ≈
−1.20 at time t ≈ 3.5× 104, while λ3 (green curve)
practically attains its asymptotic value χ3 = −11.26

earlier at t ≈ 7.9×103. We note that in Fig. 1(b) we
have scaled the λ3 values for visualization purposes.
In Fig. 1(c), we plot the time evolution of the GALI2
(solid blue curve) and the GALI3 (solid red curve,
inset plot) of the same trajectory. This behavior of
the GALI2 is similar to what is observed for regu-
lar orbits in conservative Hamiltonian systems, and
in accordance with the theoretical prediction of (6).
This similarity is not due to the dynamical resem-
blance between the two types of trajectories (actu-
ally, the asymptotic approach of a stable fixed point
in the dissipative system (8) observed in Fig. 1(a)
is quite different from the regular motion taking
place on a torus in the phase space of a conserva-
tive Hamiltonian system), but is based on the fact
that for both orbital behaviors, the two largest LEs,
χ1 and χ2, are equal (χ1 ≈ χ2 ≈ −1.20 for the tra-
jectory of Fig. 1(a), while χ1 = χ2 = 0 for a reg-
ular orbit of a Hamiltonian system). Another way
to understand the behavior of the GALI2 in the
case of orbits characterized by χ1 ≈ χ2 is to notice
that the more general behavior of the index given
in (7) results in the prediction of (6) for k = 2 and
χ1 = χ2. On the other hand, the GALI3, shown in
the inset plot of Fig. 1(c), decays to zero follow-
ing the exponential law exp[−(2χ1−χ2−χ3)], with
χ1 = −1.20, χ2 = −1.20, and χ3 = −11.26 (dashed
red curve) in accordance with (7).

4.1.2. A stable limit cycle case

Figure 1(d) depicts an example of a stable limit
cycle attractor occurring in the 3D Lorenz sys-
tem (8) with a = 10, b = 8/3, and r = 1. In par-
ticular, we see the evolution of a trajectory with
IC (x, y, z) = (1, 3, 6), which, as in Fig. 1(a), is
represented by an orange circle point. After an ini-
tial transit phase (gray curve), the orbit approaches
the black-colored stable limit circle, i.e. a closed
phase space trajectory exhibiting periodic behavior.
In Fig. 1(e), we show the time evolution of the tra-
jectory’s three ftLEs. The largest one, λ1, decreases
asymptotically to zero, while λ2 and λ3 eventu-
ally remain constant having negative values, which
can be considered as very good approximations
of the orbit’s LEs: χ2 = −2.67 and χ3 = −11.
We note that in Fig. 1(e), the values of λ3 have
been scaled for visualization purposes. In Fig. 1(f),
we present the time evolution of the trajectory’s
GALI2 (solid blue curve) and GALI3 (solid red
curve, inset plot). Since the values of the LEs are
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. (Left column) 3D phase space portraits of trajectories with IC (x, y, z) = (1, 3, 6) [indicated by an orange circle point
in (a) and (d), while in (g) is hidden behind the orbit] for the 3D Lorenz system (8) with parameters a = 10, b = 8/3 and
(a) r = 2.1, (d) r = 1, and (g) r = 33.3. The trajectory asymptotically tends to (a) a stable fixed point, (d) a stable limit cycle,
and (g) a chaotic strange attractor. In gray, we depict the initial part of the trajectory’s evolution and in black its asymptotic
behavior, while in red, blue and green, we show its 2D xy, xz, and yz projections, respectively. (Middle column) The time
evolution of the ftLEs of the trajectories depicted in the respective panel of the left column: λ1 (red curves), λ2 (blue curves),
and λ3 (green curves). The black line in each panel indicates λj = 0 for comparison. Note that in all panels, the λ3 values have
been scaled for visualization purposes. (Right column) The time evolution of the GALI2 (solid blue curves) and the GALI3
(solid red curves in the inset plots) for the orbits depicted in the first panel of each row. Apart from the GALI2 in (c), which
oscillates around a constant positive value, all GALIs decay exponentially fast to zero, following the functional forms (dashed
curves) given in (7) based on the LEs estimations obtained from the result presented in the plots of the middle column of
panels. In particular, these values are: (c) χ1 = −1.20, χ2 = −1.20, χ3 = −11.26, (f) χ1 = 0, χ2 = −2.67, χ3 = −11, and
(i) χ1 = 1.02, χ2 = 0, and χ3 = −14.69.
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not equal, both indices decay exponentially fast to
zero with rates defined by the theoretical predic-
tion (7), namely GALI2 ∝ exp[−(χ1 − χ2)] and
GALI3 ∝ exp[−(2χ1 − χ2 − χ3)] (dashed curves),
with χ1 = 0, χ2 = −2.67, χ3 = −11.

4.1.3. A chaotic, strange attractor case

In order to obtain a typical strange attractor in
the 3D Lorenz system (8), we keep the same IC as
before, i.e. (x, y, z) = (1, 3, 6), and set the system’s
parameters to a = 10, b = 8/3, and r = 33.3. In
Fig. 1(g), we see the respective phase portrait of
this trajectory (although the IC is not visible as it
is hidden behind the orbit), while, as is shown in
Fig. 1(h), for this orbit we eventually get λ1 > 0,
λ2 = 0 and λ3 < 0. The evolution of the three
ftLEs in Fig. 1(h) allows us to estimate the LEs as
χ1 = 1.02, χ2 = 0, and χ3 = −14.69. Since, as in the
case of the limit cycle studied in Sec. 4.1.2, the LEs
have distinct values, the GALI2 [solid blue curve in
Fig. 1(i)] and GALI3 [solid red curve in the inset of
Fig. 1(i)] indices decay exponentially fast to zero,
following functions proportional to exp[−(χ1−χ2)]
and exp[−(2χ1 − χ2 − χ3)], respectively [dashed
curves in Fig. 1(i)], in accordance with (7).

4.1.4. Parametric exploration of the 3D
Lorenz system’s dynamics

So far, we have examined a small number of exem-
plary trajectories of the 3D Lorenz system (8), by

choosing different values for the model parameter r.
We now perform a more global investigation of the
GALI2 performance, in comparison to the behavior
of the system’s LEs, for a range of r values, while
the other parameters are kept fixed to a = 10 and
b = 8/3. Since the dynamical classification of the
different types of trajectories in Sec. 2.1 was done
with respect to the orbit’s LEs spectrum, we first
conduct a parameter exploration of this spectrum
and then we compare our findings with the obtained
GALI2 results. In our analysis, we consider only
the GALI2 method, because the GALI3, as was also
shown in Figs. 1(c), 1(f) and 1(i), decays exponen-
tially fast to zero for all considered cases, and hence
it does not provide any insight into the distinction
for different types of motion. We note that for our
investigations, the ftLEs and the GALI2 were com-
puted for t = 104 time units, and that whenever
GALI2 ≤ 10−8, we stopped our calculations in order
to reduce the required computational cost, consid-
ering this threshold value as a good indication that
the index was practically equal to zero. In this sec-
tion, we present results obtained for the orbit with
IC (x, y, z) = (1, 3, 6), which is a good choice to
study the system’s dynamical behaviors, as other
ICs practically gave similar results.

In Fig. 2(a), we present the values of the three
ftLEs, λ1 (red curve), λ2 (blue curve), λ3 (green
curve) at t = 104 (which can be considered as good
approximations of the actual LEs) for 1001 equally
distributed r values in the range −5 ≤ r ≤ 500.

(a) (b)

Fig. 2. The values, at t = 104, of (a) the spectrum of the ftLEs λ1, λ2, λ3 (resp., depicted by red, blue, and green curves)
and (b) the GALI2, as a function of r (r ∈ [−5, 500]) for the trajectory with IC (x, y, z) = (1, 3, 6) of the 3D Lorenz system (8)
with a = 10 and b = 8/3. Gray vertical dashed lines indicate the values r = 1.3, 21.3, 146.9, 166, 215.4 in (a), and the values
r = 1.3 and 21.3 in (b).
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For −5 ≤ r ≤ 21.3, the system exhibits stable fixed
points characterized by all ftLEs eventually being
negative. The GALI2 decays exponentially fast to
zero, quickly reaching very small values for −5 ≤
r ≤ 1.3 [Fig. 2(b)] where stable fixed points with
λ1, λ2 having negative, but different values, occur.
This behavior is due to the fact that the GALI2 fol-
lows the time evolution described in (7), for which
λ1 > λ2 leads to exponential decay. For values in the
interval 1.3 ≤ r ≤ 21.3, where λ1 ≈ λ2, the GALI2
asymptotically attains positive values, in agreement
with the prediction provided from (7). From the
results of Fig. 2(a), we see that for 21.3 < r ≤ 146.9
and 166 < r ≤ 215.4, the dynamics of the system
is characterized by the presence of strange attrac-
tors (λ1 > 0), while the appearance of stable limit
cycles (characterized by λ1 = 0) is observed for
146.9 < r ≤ 166 and r > 215.4. For all of these
cases, since λ1 6= λ2, the GALI2 decays exponen-
tially fast to zero as (7) denotes. Thus, we under-
stand that the index cannot differentiate between
the various dynamical behaviors appearing when
λ1 > λ2.

In Fig. 3, we perform a parametric exploration
of the dynamics of the 3D Lorenz system (8) by
varying both the r and b parameters, while keeping
the other parameters of the system fixed to a = 35,
as well as the IC of the considered trajectory at
(x, y, z) = (2, 1, 5). For each combination of r and
b, we integrate the trajectory for t = 104 time units
and register the values of the ftLEs, as well as of the
GALI2 at the end of the integration. We note that,
in order to obtain the results of Fig. 3, we changed
the value of a, along with the coordinates of the

considered IC, with respect to what we used before,
solely for exploring different setups of the system.

In Fig. 3(a), we color each point of the parame-
ter space (r, b) according to the final λ1 value of the
considered trajectory. To enhance visualization, we
implement a scaling approach on the computed λ1
values, transforming them into the range [−1, 1] to
emphasize their sign and closeness to zero. In par-
ticular, we map positive λ1 values (in this case, we
had 0 ≤ λ1 ≤ 5.99) to [0, 1], and negative values
(the actual values were −2.45 ≤ λ1 ≤ 0) to [−1, 0].
This approach enables us to distinguish whether λ1
is negative, zero or positive without focusing on its
actual value.

Thus, by identifying whether λ1 < 0, λ1 ≈ 0 or
λ1 > 0, we characterize the considered trajectory as
tending to a stable fixed point, a stable limit cycle
or a chaotic attractor, respectively. Consequently,
blue regions (λ1 > 0) in Fig. 3(a) denote the
existence of chaotic attractors, yellow/orange areas
(λ1 ≈ 0) represent parameter regions where stable
limit cycles exist, while dark red colors (λ1 < 0)
denote the appearance of stable fixed points. It
is worth noting that for the considered parameter
ranges, we have not detected motion on a stable kD
torus, k > 1, which would be characterized by hav-
ing the k largest LEs practically equal to zero.

To better categorize the different types of
dynamical behaviors appearing in the 3D Lorenz
system (8), we perform a classification based on the
values of the whole spectrum of LEs. To do that,
we use an index Λ to denote the various observed
arrangements. In particular, we set Λ = 1 when the
combination λ1 > 0, λ2 ≤ 0, λ3 < 0, corresponding

Fig. 3. The parameter space (r, b) of the 3D Lorenz system (8) with a = 35, colored according to the value of (a) the ftmLE
λ1 (scaled in the interval [−1, 1]), (b) the index Λ and (c) the GALI2 of the trajectory with IC (x, y, z) = (2, 1, 5), at t = 104.
In (b), the index Λ is Λ = 1 when λ1 > 0, λ2 ≤ 0, λ3 < 0 (blue region), indicating the presence of chaotic attractors, Λ = 2 for
λ1 ≈ 0, λ2 < 0, λ3 < 0 (orange region) denoting the existence of limit cycles, and Λ = 3 when λ1, λ2, λ3 < 0 (purple region)
corresponding to the appearance of stable fixed points. Each color plot is created by considering a set of 2991× 81 = 242271
equally spaced grid points on the region (r, b) = [0, 300]× [1, 5].
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to the presence of chaotic attractors, is observed,
while Λ = 2 denotes the presence of a limit cycle
(i.e. λ1 ≈ 0, λ2 < 0, λ3 < 0), and Λ = 3 corre-
sponds to λi < 0, i = 1, 2, 3, indicating the existence
of stable fixed points. The outcome of this process
is depicted in Fig. 3(b), where the parameter val-
ues associated with different asymptotic dynamical
behaviors are denoted by diverse colors: blue (Λ =
1, chaotic attractors), orange (Λ = 2, stable limit
cycles), and purple (Λ = 3, stable fixed points). By
comparing Figs. 3(a) and 3(b), we see that both
of them capture, in a practically similar way, the
dynamical behavior of the system, by clearly iden-
tifying parameter regions where the studied trajec-
tories eventually tend to different attractors. The
separation between the different dynamical regions
is clearer in Fig. 3(b) because the coloring of the
parameter space is not continuous, as only three col-
ors are used. Nevertheless, the identifications of the
different types of motions are also very well done
by computing only the ftmLE in Fig. 3(a), some-
thing which is computationally easier than finding
the values of the whole spectrum of LEs needed for
creating Fig. 3(b). Thus, we conclude that using
only the value of λ1 is sufficient to reveal the differ-
ent dynamical behaviors exhibited by the 3D Lorenz
system (8) for the parameter ranges considered in
Fig. 3.

In Fig. 3(c), we present a similar analysis to
the one performed in Fig. 3(a), but by using the
GALI2 values. From the results of this figure, we
see that the GALI2 becomes practically zero for
the majority of the considered cases, as the largest
part of the parametric space is colored in blue. This
is due to the exponential decay of the GALI2 to
zero, in accordance with (7), as in all these cases
λ1 6= λ2. Only in the leftmost region of Fig. 3(c)
(small r values), where stable fixed point attrac-
tors exist according to Figs. 3(a) and 3(b), the
GALI2 attains nonzero positive values (region col-
ored in purple/red) in accordance with the predic-
tions of (7), as in these cases, the two largest LEs
have negative, but almost identical values.

It is clear from Fig. 3 that the computation of
the spectrum of LEs [Fig. 3(b)], or even the estima-
tion of only the mLE [Fig. 3(a)], manages to cap-
ture the existence of different types of attractors in
the phase space of the 3D Lorenz system (8). On
the other hand, the computation of the GALI2 suc-
ceeds in identifying the presence of only stable fixed
points, which are characterized by λ1 ≈ λ2, but fails

to discriminate between other dynamical behaviors
for which λ1 > λ2, as in all these cases, it becomes
zero following the exponential decay of (7).

4.2. Numerical investigation of the
4D Lorenz hyperchaotic system

To further explore the behavior of the GALI method
for hyperchaotic attractors, we employ the 4D
Lorenz model (9). The addition of a fourth dimen-
sion allows the system to attain two positive LEs
and more complex dynamics compared to its 3D
counterpart model (8). In this section, we perform
a similar analysis to the one presented in Sec. 4.1.

4.2.1. A stable fixed point case

We begin our investigation by considering the tra-
jectory with IC (x, y, z, w) = (3, 2, 10, 1) of the
4D Lorenz system (9) with parameters a = 35,
b = 8/3, c = 2, and r = −12, which results
in an orbit asymptotically approaching a stable
fixed point attractor. Since system (9) involves
four state variables, x, y, z and w, the direct visu-
alization of the entire phase space is challeng-
ing, so, we plot all possible 3D projections of the
4D space, i.e. (x, y, z), (x, y, w), and (y, z, w), in
Figs. 4(a1)–4(a3), respectively. We note that in
each plot the trajectory’s IC is denoted by an
orange circle point. For each 3D phase space plot,
we also depict the 2D projections of the trajec-
tory in the respective planes, similarly to what
was done in the left column panels of Fig. 1. In
Figs. 4(a1)–4(a3), we clearly see that this trajectory
eventually tends to the stable fixed point attrac-
tor (x∗, y∗, z∗, w∗) = (7.141, 5.129, 13.733,−3.923).
All the LEs of the trajectory have negative val-
ues [Fig. 4(b)], as expected for stable fixed point
attractors, reflecting the system’s phase space con-
traction. In addition, the two largest ftLEs, λ1 and
λ2, eventually saturate to the same negative value,
indicating that the system exhibits uniform con-
traction along the related directions. Due to the
practical equality of λ1 and λ2, and in agreement
with the theoretical prediction (7), the trajectory’s
GALI2 [solid blue curve in Fig. 4(c)] fluctuates
around a constant positive value. On the other
hand, the GALI3 and the GALI4 indices [red and
green solid curves in the inset of Fig. 4(c), resp.]
exhibit exponential decays. The good agreement
between the actual GALI3 and GALI4 values, and
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(a1) (a2) (a3)

(b) (c)

Fig. 4. (a1)–(a3) 3D phase space projections of the trajectory with IC (x, y, z, w) = (3, 2, 10, 1) (orange circle points), which
asymptotically approaches a stable fixed point attractor of the 4D Lorenz system (9) with a = 35, b = 8/3, c = 2, and
r = −12. As in the left column panels of Fig. 1, we use gray color to depict the initial phase of the trajectory’s evolution, and
red, green and blue colors to show projections of the orbit in different 2D planes. (b) The time evolution of the four ftLEs
of the trajectory. The λ4 values have been rescaled for visualization purposes. The horizontal black line indicates λj = 0 for
comparison. (c) The time evolution of the GALI2 (solid blue curve) displays fluctuations around a constant positive value due
to the fact that λ1 and λ2 become practically equal. The GALI3 (solid red curve) and the GALI4 (solid green curve) in the
inset decay to zero following specific exponential laws provided by (7) (dashed curves).

the theoretical expectation provided by (7), is ver-
ified by the proximity of the red and green dashed
curves in the inset of Fig. 4, which denote func-
tions proportional to exp[−(2χ1 − χ2 − χ3)] and
exp[−(3χ1−χ2−χ3−χ4)], respectively. These func-
tions are computed for χ1 = −1.23, χ2 = −1.23,
χ3 = −11.94, and χ4 = −50.66, which are good
estimations of the trajectory’s LEs, obtained from
the results of Fig. 4(b).

4.2.2. A stable limit cycle case

To study a case of a stable limit cycle in the 4D
Lorenz system (9), we set r = −5, while keeping
all the other parameters and the considered IC as

in Sec. 4.2.1, namely a = 35, b = 8/3, c = 2
and (x, y, z, w) = (3, 2, 10, 1). In Figs. 5(a1)–5(a3),
where we present the 3D projections of this tra-
jectory, we see that after an initial transient phase
(colored in gray), the trajectory becomes confined
on a closed loop in all 3D projections (and con-
sequently in the related 2D projections). The tra-
jectory’s ftmLE, λ1, converges to zero, while the
remaining ftLEs tend to negative values [Fig. 5(b)],
which, according to the classification presented in
Sec. 2.1, indicates that the system exhibits a sta-
ble limit cycle. Since λ1 > λ2, all GALIk, k =
2, 3, 4, indices [solid blue, red and green curves,
resp., in Fig. 5(c) and its inset] decay to zero expo-
nentially fast following evolutions proportional to

2530021-11



June 3, 2025 15:32 WSPC/S0218-1274 IJBC 2530021

H. T. Moges et al.

(a1) (a2) (a3)

(b) (c)

Fig. 5. (a1)–(a3) 3D phase space projections of the trajectory with IC (x, y, z, w) = (3, 2, 10, 1) (orange circle points), which
asymptotically approaches a stable limit cycle of the 4D Lorenz system (9) with a = 35, b = 8/3, c = 2, and r = −5. As
in Fig. 4, we use gray color to depict the initial phase of the trajectory’s evolution, and red, green and blue colors to show
projections of the orbit in different 2D planes. (b) The time evolution of the four ftLEs of the trajectory. The λ4 values
have been rescaled for visualization purposes. The horizontal black line (not clearly seen due to the overlap of the λ1 values)
indicates λj = 0 for comparison. (c) The GALI2 (solid blue curve), GALI3 (solid red curve) and GALI4 (solid green curve in
the inset) decay to zero following specific exponential laws provided by (7) (dashed curves).

exp[−(χ1 − χ2)], exp[−(2χ1 − χ2 − χ3)], and
exp[−(3χ1−χ2−χ3−χ4)], respectively, with χ1 =
0, χ2 = −1.63, χ3 = −1.63, and χ4 = −40.37
[denoted by dashed curves in Fig. 5(c)], in agree-
ment with (7).

4.2.3. A chaotic, strange attractor case

By setting r = 1.5, while keeping a = 35, b = 8/3,
c = 2 and the IC (x, y, z, w) = (3, 2, 10, 1) as
before, we obtain for system (9) a trajectory which
tends to a chaotic attractor. In Figs. 6(a1)–6(a3),
we show the 3D phase space projections of this
trajectory, which exhibits a rather complex behav-
ior on a chaotic attractor. From the trajectory’s
LEs, only λ1 remains positive, tending to a constant
number χ1 = 1.60, while λ2 becomes zero, and λ3

and λ4 eventually attain negative values indicat-
ing that χ3 = −0.59 and χ4 = −40.64 [Fig. 6(b)].
In Fig. 6(c) and its inset, the exponential decay
of the GALI2 (solid blue curve), GALI3 (solid red
curve) and GALI4 (solid green curve) is clearly seen.
These decays are well approximated by GALI2 ∝
exp[−(χ1 − χ2)], GALI3 ∝ exp[−(2χ1 − χ2 − χ3)],
and GALI4 ∝ exp[−(3χ1 − χ2 − χ3 − χ4)] (dashed
curves) for χ1 = 1.60, χ2 = 0, χ3 = −0.59 and
χ4 = −40.64.

4.2.4. A hyperchaotic attractor case

The last case we consider in the 4D Lorenz sys-
tem (9) is a trajectory with IC (x, y, z, w) =
(3, 2, 10, 1) for a = 35, b = 8/3, c = 55 and r = 1.5,
which exhibits hyperchaotic behavior. The various
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(a1) (a2) (a3)

(b) (c)

Fig. 6. Similar to Fig. 5, but for the trajectory with IC (x, y, z, w) = (3, 2, 10, 1) of the 4D Lorenz system (9) with a = 35,
b = 8/3, c = 55 and r = −1. The trajectory tends to a chaotic attractor having χ1 = 1.60, χ2 = 0, χ3 = −0.59, and
χ4 = −40.64.

3D phase space projections of this trajectory are
shown in Figs. 7(a1)–7(a3), and the time evolution
of its ftLEs in Fig. 7(b). The hyperchaotic nature
of the dynamics is reflected on the attained positive
values of the two largest ftLEs, whose evolution in
Fig. 7(b) suggests that the corresponding LEs are
χ1 = 1.53 and χ2 = 0.51. The other two ftLEs also
tend to constant values indicating that χ3 = 0 and
χ4 = −39.19. As expected from the theoretical pre-
diction (7), and since the two largest LEs are differ-
ent from each other, all GALIs tend exponentially
fast to zero [Fig. 7(c)].

4.2.5. Parametric exploration of the 4D
Lorenz system’s dynamics

In order to study the dynamics of the 4D Lorenz
system (9) in a more extensive way, we numerically
investigate the fate of a representative trajectory

with IC (x, y, z, w) = (2, 1, 5, 1) by setting a = 35,
b = 8/3, c = 55, and considering 300 equally spaced
values of the parameter r in the interval [−12, 3].
Integrating this trajectory up to t = 104 for each
considered parameter set, and registering the value
of its ftLEs after that time, we obtain the results
presented in Fig. 8. The computed values of the
ftLEs (λ1, λ2, λ3, and λ4 are depicted by red, blue,
green and purple curves, resp., in Fig. 8) allow us to
identify parameter regions where different dynam-
ical behaviors are observed. For −12 ≤ r ≤ −11,
the motion is characterized by a positive λ1, denot-
ing the presence of chaotic motion, while for −11 <
r ≤ −10.65, λ1 becomes approximately zero indi-
cating the existence of stable limit cycles. Addi-
tionally, chaotic attractors characterized by λ1 > 0,
λ2 ≈ 0 are observed for r ∈ (−10.65,−7.4] and
r ∈ (−4, 0.65], while stable limit cycles appear
for −7.4 < r ≤ −4. It is worth noting that for
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(a1) (a2) (a3)

(b) (c)

Fig. 7. Similar to Fig. 5, but for the trajectory with IC (x, y, z, w) = (3, 2, 10, 1) of the 4D Lorenz system (9) with a = 35,
b = 8/3, c = 55 and r = 1.5. The trajectory exhibits hyperchaotic behavior having χ1 = 1.53, χ2 = 0.51 χ3 = 0 and
χ4 = −39.19.

0.1 < r ≤ 3, the two largest ftLEs, λ1 and λ2,
are positive, denoting the existence of hyperchaotic
motion. We also note that in Fig. 8 all the above-
mentioned r values, where transitions between dif-
ferent dynamical behaviors occur, are denoted by
vertical gray dashed lines. The results of Fig. 8 show
that the computation of the spectrum of LEs allows
the clear differentiation between diverse dynamical
behaviors. On the other hand, the GALI2 index fails
to identify these differences because it falls expo-
nentially fast to zero, attaining very small values
at the end of the integration time for all consid-
ered cases. This happens because for all trajecto-
ries considered in Fig. 8, λ1 > λ2, something which,
according to (7), leads to the exponential decay of
the GALI2, as well of the GALIs of higher order.

To perform an even broader investigation of
system’s (9) dynamical behavior, we let two of its
parameters vary. Namely, we consider setups for

r ∈ [−12, 1] and c ∈ [1, 55], while a and b are kept
fixed to a = 35 and b = 8/3. For each one of these
arrangements, we follow the evolution of the trajec-
tory with IC (x, y, z, w) = (3, 2, 10, 1) and register
the values of its ftLEs λ1, λ2, λ3, and λ4, as well
as its GALI2 at t = 104. In Fig. 9(a), we color each
point of the parameter space (r, c) according to the
trajectory’s λ1 value when it is scaled in the interval
[−1, 1], as was also done in Fig. 3(a). This process
allows us to identify regions in the parameter space
associated with the existence of different dynamical
behaviors. More specifically, areas colored in yel-
low/orange (λ1 ≈ 0) indicate the presence of stable
limit cycles, while purple/dark-red regions (λ1 < 0)
denote the appearance of stable fixed points, and
blue-colored areas (λ1 > 0) define parameter values
for which chaotic or hyperchaotic attractors exist.

The regions of the parameter space where dif-
ferent dynamical behaviors appear become more
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Fig. 8. The values of the ftLEs spectrum λ1, λ2, λ3, λ4
(red, blue, green and purple curves, resp.) at time t = 104,
as a function of the parameter r of the 4D Lorenz sys-
tem (9) with a = 35, b = 8/3, c = 55, for the orbit with IC
(x, y, z, w) = (2, 1, 5, 1). The values of λ4 have been rescaled
for visualization purposes, while gray vertical dashed lines
denote values r = −11,−10.65,−7.4,−4, 0.1, where transi-
tions between different dynamical behaviors occur (see text
for more details).

apparent if we use information about the whole
spectrum of ftLEs and not only λ1, as is done in
Fig. 9(a). Following a methodology similar to the
one used for the creation of Fig. 3(b), we assign dif-
ferent values to an index Λ as follows: Λ = 1 when
the final values of the ftLEs are arranged as λ1 > 0,
λ2 > 0, λ3 < 0, λ4 < 0, denoting the presence of
hyperchaotic attractors, Λ = 2 for λ1 > 0, λ2 ≤ 0,
λ3 < 0, λ4 < 0, corresponding to the appear-
ance of chaotic attractors, Λ = 3 when λ1 ≈ 0,

Fig. 9. The parameter space (r, c) of the 4D Lorenz system (9) with a = 35 and b = 8/3, colored according to the value of
(a) the ftmLE λ1 (scaled in the interval [−1, 1]), (b) the index Λ, and (c) the GALI2 of the trajectory with IC (x, y, z, w) =
(3, 2, 10, 1), at t = 104. In (b), the index Λ is Λ = 1 when λ1 > 0, λ2 > 0, λ3 < 0, λ4 < 0 (blue region), indicating the presence
of hyperchaotic attractors, Λ = 2 for λ1 > 0, λ2 ≤ 0, λ3 < 0, λ4 < 0 (green region) corresponding to the appearance of chaotic
attractors, Λ = 3 when λ1 ≈ 0, λ2 < 0, λ3 < 0 λ4 < 0 (orange region) denoting the existence of stable limit cycles, and Λ = 4
when λi < 0, i = 1, 2, 3, 4 (purple region) corresponding to the appearance of stable fixed points. Each color plot is created by
considering a set of 590× 260 = 153, 400 equally spaced grid points on the region (r, c) = [−12, 1]× [1, 55].

λ2 < 0, λ3 < 0, λ4 < 0, signifying the existence
of stable limit cycles, and Λ = 4 when stable fixed
point attractors exist, and all ftLEs are negative,
i.e. λi < 0, i = 1, 2, 3, 4. Based on this classifica-
tion, we color the system’s parameter space (r, c) in
Fig. 9(b) using four distinct colors for the different
values of index Λ: 1 (blue), 2 (green), 3 (orange)
and 4 (purple).

From the results of Fig. 9(c), where each point
of the parameter space is colored according to the
trajectory’s GALI2 value at t = 104, we see that the
index is not able to differentiate between regions
of diverse dynamical behaviors, as the majority of
points are colored in blue, indicating very small val-
ues of the index (GALI2 ≤ 10−8). This is due to
the fact that, according to (7), whenever λ1 > λ2,
the GALI2 exponentially decays to zero. The only
region of the parameter space where the GALI2 does
not become practically zero corresponds to the pres-
ence of stable fixed points, i.e. the region associated
with Λ = 4 colored in purple in Fig. 9(b), as in most
cases there the two largest LEs, which are negative,
are also practically equal.

4.3. Numerical investigation of the
generalized hyperchaotic
Hénon map

So far, in order to explore the GALIs’ behavior
in dissipative systems, we have considered exam-
ples of continuous time dynamical systems, namely
the 3D (8) and 4D (9) Lorenz models. In all stud-
ied cases, we found that the time evolution of
the GALIs is well described by (7). To further
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investigate the behavior of the GALIs for various
types of trajectories occurring in discrete time dissi-
pative systems, we perform in this section a similar
study to the ones presented in Secs. 4.1 and 4.2, for
the generalized hyperchaotic Hénon map (10).

4.3.1. A stable fixed point case

We begin our investigation by presenting in
Fig. 10(a) the 3D phase space portrait of the gen-
eralized hyperchaotic Hénon map (10) with a = 0.3
and b = 0.5, for a trajectory with IC (x, y, z) =
(0.5, 0.4, 0.2) which approaches a stable fixed point
attractor. From Fig. 10(a), we see that the trajec-
tory’s consequents (black points) tend to the sta-
ble fixed point (x∗, y∗, z∗) = (0.3521, 0.3521, 0.3521)
located at the center of the spiral created by the
orbit’s points. Figure 10(b) shows that all the ftLEs
of the trajectory are negative tending to the val-
ues χ1 = χ2 = −0.015 and χ3 = −0.66. The fact
that the two largest LEs attain the same (nega-
tive) value results in the oscillations of the asso-
ciated GALI2 index around a positive value [blue
curve in Fig. 10(c)]. On the other hand, the GALI3
tends to zero exponentially fast [solid red curve in
the inset of Fig. 10(c)] following the exponential law
GALI3 ∝ exp[−(2χ1−χ2−χ3)] (dashed red curve)
with χ1 = −0.015, χ2 = −0.015 and χ3 = −0.66, in
accordance with (7).

4.3.2. A stable limit cycle case

By setting a = 0.3481 and b = 0.5 in the Hénon
map (10), and keeping the IC to be (x, y, z) =
(0.5, 0.4, 0.2), we obtain a trajectory which tends
to a stable limit cycle, as can be seen from the 3D
phase space portrait of this orbit in Fig. 10(d). Fig-
ure 10(e) shows the evolution of the trajectory’s
ftLEs. In this figure, we see that λ1 (red curve)
tends to zero, while the other two ftLEs (blue and
green curves) remain always negative, approach-
ing the values χ2 = −0.023, and χ3 = −0.67.
Since χ1 > χ2, and in accordance with (7), both
the GALI2 and GALI3 indices should exponentially
tend to zero. Indeed this is the case, as we can
observe from the results of Fig. 10(f) where the
time evolution of the GALI2 (solid blue curve) and
the GALI3 (solid red curve in the inset of the fig-
ure) is shown. These exponential decays are very
well approximated by exp[−(χ1−χ2)] (dashed blue
curve) and exp[−(2χ1−χ2−χ3)] (dashed red curve

in the figure’s inset) for χ1 = 0, χ2 = −0.023, and
χ3 = −0.67.

4.3.3. A chaotic, strange attractor case

By changing the parameters of the Hénon map (10)
to a = 0.75 and b = 0.01, the trajectory with IC
(x, y, z) = (0.5, 0.4, 0.2) yields a chaotic attractor
[Fig. 10(g)], characterized by an eventually posi-
tive ftmLE λ1 = 0.051, while λ2 and λ3 remain
negative, asymptotically attaining the values χ2 =
−0.021, and χ3 = −0.72, respectively [Fig. 10(h)].
Since χ1 > χ2, similar to what was observed for
the trajectory of Sec. 4.3.2, both the GALI2 [solid
blue curve in Fig. 10(i)] and the GALI3 [solid red
curve in the inset of Fig. 10(i)] decrease to zero,
following exponential decay rates defined in (7),
namely GALI2 ∝ exp[−(χ1 − χ2)] and GALI3 ∝
exp[−(2χ1 − χ2 − χ3)] [blue and red dashed curves
in Fig. 10(i) and its inset, resp.] for χ1 = 0, χ2 =
−0.021, and χ3 = −0.72.

4.3.4. A hyperchaotic attractor case

Figure 10(j) illustrates the phase space portrait of
the trajectory with IC (x, y, z) = (0.5, 0.4, 0.2) of
the Hénon map (10) with a = 1.6 and b = 0.01. This
trajectory tends to a hyperchaotic attractor, simi-
larly to what was also observed in Fig. 3 of [Wang
et al., 2023], but for different parameter values
of (10). The hyperchaotic nature of the attractor is
reflected on the fact that, as is seen in Fig. 10(k),
the trajectory has two positive ftLEs tending to val-
ues χ1 = 0.19 and χ2 = 0.18, with the third one
being negative, tending to χ3 = −4.97. Again, due
to the fact that χ1 > χ2 the GALI2 and the GALI3
decrease to zero exponentially fast, i.e. GALI2 ∝
exp[−(χ1−χ2)] and GALI3 ∝ exp[−(2χ1−χ2−χ3)]
[Fig. 10(l)].

4.3.5. Parametric exploration of the
dynamics of the generalized
hyperchaotic Hénon map

Similarly to what was done in Figs. 2 and 3 for
the 3D Lorenz system (8), and in Figs. 8 and 9
for the 4D Lorenz system (9), we now perform a
more global analysis of the dynamics of the Hénon
map (10), by varying only one [Fig. 11], or both its
parameters [Fig. 12].

The results of Fig. 11 are obtained by consider-
ing the trajectory with IC (x, y, z) = (0.5, 0.4, 0.2),
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 10. (Left column) 3D phase space portraits of trajectories with IC (x, y, z) = (0.5, 0.4, 0.2) [indicated by an orange
circle point in (a), (d), (g) and (j)], for the generalized hyperchaotic Hénon map (10) with parameters (a) a = 0.3, b = 0.5,
(d) a = 0.3481, b = 0.5, (g) a = 0.75, b = 0.01, and (j) a = 1.6, b = 0.01. The trajectory asymptotically tends to (a) a
stable fixed point, (d) a stable limit cycle, (g) a chaotic attractor, and (j) a hyperchaotic attractor. Gray points depict the
initial part of the trajectory’s evolution, black points represent its asymptotic behavior, while red, blue and green points show
the orbit’s 2D xy, xz, and yz projections, respectively. (Middle column) The time evolution of the ftLEs of the trajectories
depicted in the respective panel of the left column: λ1 (red curves), λ2 (blue curves), and λ3 (green curves). The black line in
each panel indicates λj = 0 for comparison. Note that in all panels the λ3 values have been scaled for visualization purposes.
(Right column) The time evolution of the GALI2 (solid blue curves) and the GALI3 (solid red curves in the inset plots) for the
orbits depicted in the first panel of each row. Apart from the GALI2 in (c), which oscillates around a constant positive value,
all GALIs decay exponentially fast to zero, following the functional forms (dashed curves) given in (7) for LEs’ estimations
obtained from the result presented in the middle column plots (see text for the exact numerical values).
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(a) (b)

Fig. 11. The values, after n = 104 iterations of the Hénon map (10) with b = 0.1 of (a) the spectrum of the ftLEs λ1, λ2,
λ3 (red, blue, and green curves, resp.), and (b) the GALI2, as a function of a (a ∈ [−0.05, 1.6]) for the trajectory with IC
(x, y, z) = (0.5, 0.4, 0.2). Gray vertical dashed lines denote in (a) the values a = 0.01, 0.7835, 1.0835, 0.125, 0.129, 1.3634 and
1.4835 in (a), and the values a = 0.01, 0.7835, 0.125, 0.129 in (b).

fixing b = 0.1, and varying the values of a in the
interval [−0.05, 1.6]. More specifically, in Fig. 11(a),
we present the values of the trajectory’s ftLEs, λ1,
λ2 and λ3 (red, blue and green curves, resp.) after
n = 104 iterations of the map, as a function of a,
while in Fig. 11(b), we have a similar plot for the
values of the GALI2. In Fig. 11(a), we see that for
a ≤ 0.7835, the trajectory tends to a stable fixed
point, like the one depicted in Fig. 10(a), and conse-
quently all its ftLEs are negative. For 0.7835 < a ≤
1.0835, we practically have λ1 = 0, indicating the
presence of a stable limit cycle, similar to the one
shown in Fig. 10(d). Then, for 1.0835 < a ≤ 1.3634,

the system exhibits again fixed points characterized
by all ftLEs being negative. For a > 1.3634, the
ftmLE, λ1, becomes positive (while both λ2 and λ3
are negative), denoting the presence of a chaotic
attractor, while for a > 1.4835, hyperbolic behav-
ior appears as the two largest ftLEs are positive.
As can be seen in Fig. 11(b) the GALI2 is dif-
ferent from zero only when the two largest ftLEs
are practically equal. This happens in the ranges
0.01 ≤ a ≤ 0.7835 and 0.125 ≤ a ≤ 0.129, where
stable fixed point attractors exist. It is worth not-
ing that for a ∈ [−0.05, 0.01], where again stable
fixed points appear, as it can be understood from

Fig. 12. The parameter space (a, b) of the generalized hyperchaotic Hénon map (10), colored according to the value of (a) the
ftmLE λ1 (scaled in the interval [−1, 1]), (b) the index Λ, and (c) the GALI2 of the trajectory with IC (x, y, z) = (0.5, 0.4, 0.2),
after n = 104 iterations. In (b), the index Λ is Λ = 1 when λ1 > 0, λ2 > 0, λ3 < 0 (blue region), indicating the presence of
hyperchaotic attractors, Λ = 2 for λ1 > 0, λ2 ≤ 0, λ3 < 0 (green region) corresponding to the appearance of chaotic attractors,
Λ = 3 when λ1 ≈ 0, λ2 < 0, λ3 < 0 (orange region) denoting the existence of stable limit cycles, and Λ = 4 when λi < 0,
i = 1, 2, 3 (purple region) corresponding to the appearance of stable fixed points. Each color plot is created by considering a
set of 240× 1765 = 423600 equally spaced grid points on the region (a, b) = [0, 1.2]× [−0.12, 0.12].

2530021-18



June 3, 2025 15:32 WSPC/S0218-1274 IJBC 2530021

GALI Method for Dissipative Systems

the negative values of all ftLEs in Fig. 11(a), the
GALI2 becomes again zero, in accordance with (7),
because λ1 6= λ2.

In Fig. 12, we present the results obtained
in the parameter space of the Hénon map (10),
defined by a ∈ [0, 1.2] and b ∈ [−0.12, 0.12], when
a grid consisting of 240 and 1765 equally spaced
points along the a and b axis, respectively, is con-
sidered. For each parameter set, the orbit with IC
(x, y, z) = (0.5, 0.4, 0.2) is iterated n = 104 times
and its set of ftLEs and GALI2 values are com-
puted. In Fig. 12(a), we color points according to
the related ftmLE, λ1, value scaled in the range
[−1, 1], as was also done in Figs. 3(a) and 9(a).
Purple-colored regions (λ1 < 0) denote parameter
sets leading to stable fixed points, yellow/orange
areas corresponding to λ1 ≈ 0 indicate the existence
of stable limit cycles, and blue areas correspond to
the presence of chaotic motion. A clearer distinction
between the regions of the parameter space where
different dynamical behaviors occur is achieved in
Fig. 12(b) where points are colored according to the
value of the Λ index, which depends on the arrange-
ment of the whole spectrum of ftLEs. In particular,
blue regions (Λ = 1) denote the existence of hyper-
bolic motion (λ1 > 0, λ2 > 0, λ3 < 0), green areas
(Λ = 2) signify chaotic behavior (λ1 > 0, λ2 ≤ 0,
λ3 < 0), orange-colored regions (Λ = 3) correspond
to stable limit cycles (λ1 ≈ 0, λ2 < 0, λ3 < 0),
and purple regions (Λ = 4) indicate the presence
of stable fixed point attractors (λi < 0, i = 1, 2, 3).
As was also observed in Figs. 3(c) and 9(c), the
GALI2 fails to clearly discriminate between param-
eter regions where different attractors appear, as
it attains very small values [in practice, the index
becomes zero — blue regions, Fig. 12(c)] in all cases
for which λ1 6= λ2. Whenever the two largest ftLEs
are practically equal, the index oscillates around
positive values [purple-colored areas in Fig. 12(c)].
We note that some parameter sets in the upper right
corner of Fig. 12(c) are colored in yellow/red/green,
indicating the existence of weakly chaotic trajecto-
ries, which require more iterations for the GALI2
to decay to zero and to clearly reveal the motion’s
chaotic nature.

5. Summary and Discussion

In this work, we investigated in detail the behav-
ior of the GALI method for different, typical types
of motion encountered in dissipative dynamical

systems. By doing that, we completed, in some
sense, the study of the GALI technique across the
spectrum of dynamical systems, since the method
has already been extensively and very successfully
used as a chaos indicator in conservative Hamilto-
nian systems and area preserving maps.

In our work, we considered two continuous time
dissipative dynamical models, namely the 3D (8)
and the 4D (9) Lorenz systems, as well as the gen-
eralized hyperchaotic Hénon map (10), which is a
discrete time model. Using the computation of the
mLE, as well as of the whole spectrum of LEs, we
identified individual trajectories of diverse dynam-
ical behaviors, i.e. orbits leading to stable fixed
points, stable limit cycles, chaotic and hyperchaotic
attractors. Furthermore, we also defined regions in
the parameter spaces of the studied models where
these different types of attractors exist. Our stud-
ies showed that the computation of the whole spec-
trum of LEs, or even the estimation of only the
mLE (something which is obviously computation-
ally less demanding) manages to correctly discrim-
inate between the different types of motions.

With respect to the performance of the GALI
method, we found that the time evolution of the
index is always well approximated by (7), which
indicates an exponential decay of its values. We
stress that (7) dictates that the GALI of order
k (GALIk) will remain practically constant [or in
other words, will follow the behavior described
in (6)] if the first k LEs are equal. In our extensive
numerical simulations, we found cases where this is
true only for k = 2. Thus, the GALIk with k > 2
decreased exponentially fast to zero for all consid-
ered types of motions. This behavior clearly indi-
cates that the GALIk with k > 2 cannot be used to
discriminate between different types of trajectories
in dissipative dynamical systems.

On the other hand, the GALI2 did exhibit
diverse behaviors. The index fluctuated around a
practically constant positive value for orbits tending
to stable fixed point attractors, as these trajecto-
ries were typically characterized by having their two
largest LEs, χ1 and χ2, attaining negative, but nev-
ertheless practically equal, values. Furthermore, the
GALI2 decayed exponentially fast to zero for trajec-
tories tending to limit cycles, as well as chaotic and
hyperchaotic attractors, because the two largest
LEs of these orbits were not equal (χ1 > χ2). Con-
sequently, the GALI2 cannot discriminate between
these dynamical behaviors. Thus, it is advisable
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for the GALI2 to be used with caution for studies
of dissipative dynamical systems, and preferably in
conjunction with the computation of the mLE, or
even the whole spectrum of LEs.
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